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MINIMAX ROBUST MATCHED FILTERS FOR NOISE UNCERTAINTY

WITHIN 2-ALTERNATING CAPACITY CLASSES
Evaggelos Geraniotis
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and Systems Research Center
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ABSTRACT

In this paper, we address the problem of designing matched filters which are robust
against uncertainty in the statistics of the noise process. The design is based on a
game-theoretic approach in which a filter is sought that has the maximum worst-case
output signal-to-noise ratio possible over the class of allowable statistics, that is the
design is maximin signal-to-noise ratio. The problem is formulated and solved for both
discrete-time and continous-time matched filters with uncertainty in either the auto-
correlation function or the spectral measure of the noise. For uncertainty models deter-
mined by 2-alternating Choquet capacities explicit solutions are obtained which are
characterized by the Huber-Strassen derivative of the capacity generating the class with

respect to a Lebesgue-like measure on a suitable interval.
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I. Introduction

Robust signal processing techniques have received considerable attention in the last
15 years (see the tutorial in [1]). In particular, robust matched filtering problems have
been formulated and partially solved in [2) for continuous-time and [3] for discrete-time

observations.

In these problems there is uncertainty in the statistics of either the signal, or of the
noise, or of both the signal and the noise. Several uncertainty models for the signal and

the noise were considered in [2] and [3].

In this paper we focus on uncertainty in the noise autocorrelation function (time
domain) or the noise spectral measure (frequency domain) and consider uncertainty
classes determined by 2-alternating Choquet capacities [4]-[6] which were not examined
in [2)-[3]. Both discret-time and continuous-time formulations of the robust matched

filtering problem with noise uncertainty within capacity classes are considered.

The 2-alternating Choquet capacities classes include several useful uncertainty
models like the e-contaminated class [4], the total variation class [4], the band class [5]

and the p-point class [6], which have been very popular among the statisticians.

The robust matched filtering problem for noise uncertainty involves the
identification of a worst-case noise statistic over the allowable uncertainty class and the
derivation of the filter matched to this worst-case noise. Then, when this “robust” filter
is used, for any other noise statistic in the uncertainty class the signal-to-noise ratio is

guaranteed to be better than for the worst-case statistic.

This paper is organized as follows. In Section II the notation, the basic concepts
and some general results for uncertainty classes generated by 2-alternating capacities are

cited. In Section III four problems of robust matched filtering with noise uncertainty are



formulated. In Section IV a complete characterization of maximin robust matched filters

for the aforementioned four problems is provided.

II. Uncertainty Classes Generated by Choquet Capacities

Suppose that £ is a compact set and F is the o-algebra generated by its subsets.
We assume that the measures m are only known to lie in a convex class generated by a

Choquet 2-alternating capacity {7]

M, ={meM |m(A) < v(A), AEF, m(Q) = v ()} )
where M denotes the class of all measures on (2,F) and v is a 2-alternating capacity on
(Q,F).

A Choquet 2-alternating capacity [7] on (2,F) is a finite set function, which is
increasing, continuous from below, continuous from above qn closed sets, and satisfies
v(#) =0 and v(ANB)+ v(4UB) S v(A)+ v(B) for all A, B €F. Notice that
any finite measure v is a 2-alternating capacity; in this case the uncertainty class gen-
erated by (1) reduces to M, = {v }.

As an example of a 2-alternating capacity we cite the e-contaminated mixture

model [4] defined by
M, = {meM | m(A)=(Q-e)myA) +em(A) AEF, m(Q) = mo)}, (2

where mg is a known measure and the number € in (0,1) is the degree of uncertainty in

the model. Eq. (2) can be expressed in the form (1) if we set
v(A) = (1-e)m(A) + ¢ (3)

The sotal variation model [4], the band class [5], and the p-point class [S] are other popu-

lar examples of uncertainty classes generated by 2-alternating capacities.



In the sequel we will need the following results which are special cases for the
theory developed by Huber and Strassen in (7]:
Lemma 1: If v is a 2-alternating capacity on (Q2,F'), M, is a convex class of probabil-
ity measures determined by it as in (1), and A denotes the Lebesgue measure on €2, then
there ex.ists 2 unique Lebesgue measurable function 7, : 3—[0,00] with the defining pro-

perty that for all z €[0,00] and A, defined by, A, = {7, > z}

TNA,) + v(A) S s MA) + v(A°), AEF. (4)
Furthermore there exists a measure  in M, such that for all z €{0,00]

m({r, Sz} =v({m, <z} (5)

which means that fm makes 7, stochastically smallest over all m in M,, and =, is

equal to dm /d )\, the generalized Radon-Nikodym (R-N) derivative of  with respect to

A

The function 7, is termed the Huber-Strassen derivative of v with respect to A
(v may not be a measure). The measure 7 singled out by Lemma 1 is termed the

least-favorable measure of the class M,. For the e-contaminated example above we

have

o d
%(u) = max{(l—f) ;’;O(u ), c}, (6)

where ¢ is chosen so that 7 (£2) = my((2).

We would like to mention at this point that if €2 is a discrete set, then m becomes
a cummulative distribution function {cdf) and all the results involving the capacities
described above still hold, providedthat we replace the integrals with sums and the R-N

derivatives with probability mass functions (pmf’ s). This duality follows from an appli-



cation of the results of {7] (especially Lemmas 3.1 and 3.2 and Theorem 4.1) to the fol-
lowing case: The underlying space 2 is discrete, the first capacity class consists of meas-
ures m which are singular with respect the Lebesque measure, and the second class con-

sists of a single element: the measure p which assigns equal mass to all elements of 0.

III. Formulation of Four Matched Filtering Problems with Noise Uncertainty

A general matched-filter design situatiox; can be described by the following formula-
tion [2]: Let H be a separable Hilbert space (e.g., L, or R"™) with product <.,.>, and
let H denote a space of bounded (self-adjoint) nonnegative linear operators mapping H
to itsell. A matched-flitering problem on H involves three quantities: a signal quantity
sEH (e.g., a signal spectrum or waveform); a noise quantity n €H (e.g., a noise spec-
trum, autocorrelation function, or covariance matrix); and a filter quantity h €H (e.g., a
filter transfer function or impulse response). The design criterion for the filtering prob-

lem is based on a functional p:H X H X H —R defined by

2 —
plhis,n) = _Jih,s_>]_’ heH,seH,neH (7)

- <h,nh >
and representing a signal-to-noise ratio.
Within the above formulation, the matched-filtering problem for fixed s and n is

given by

max p(h;s,n)
heH

and the matched filter is h€H, any solution of the equation nhy == s, when one

exists. Then

max p(h;s,n) = plhgs,n)
heH



Note that if n is invertible we have hy = n~'s. Four cases of interest when there is
uncertainty about the noise quantity which is determined by a 2-alternating capacity are

described next.

Case 1. (Continous-Time Matched Filtering with a General Observation Inter-
val and Uncertainty in the Noise Autocorrelatio Function): Suppose we observe

a random process given by
Y, =N, +s(t), o<t<T, (9)

In (9) {NV,; 0<t <T} (here we can replace [0,T] with any general observation interval)

is a zero-mean real random process with autocorrelation function

{Rn(u,v)=n(u)d(u-v); (u,v)E0,T]?}, where n(u) is nonnegative for all u€[o,T],

and {s(t), 0<t<T} is a real-valued square-integrable deterministic waveform. For
T

fixed ¢, consider linear filters of the form j(; h(t,u)Y,du where {h(t,u), 0<u<T}is

a real-valued square-integrable function; the output signal-to-noise ration at time t is

given by

T
[fo ht,u)s(u)du |~

SNR — —
LoL k()R (w0 (¢ 0)dudv

(10)

One can show that this problem fits the general framework developed above with H

being L,0,T], with the usual L, inner product, and with
T

(nh), = fo Ry(u,v)h(u,v)dv; 0<u <T. The signal, noise and filter quantities of

the general problem are identilied with the signal waveform s(f), the integral kernel

Ry(u,v) = n{u)d(u-v), and the fiiter’ s impulse response h{f,u), respectively. The

optimum filter is given by any L, solution to the Fredholm integral equation

T
f Ry(u,v)h(t,v)dv = s(u), 0<u<T, which in this case reduces to
0



h(t, u)=s(u)/n(u), independent of ¢ (11)
Therefore, the signal-to-noise ration in (9) takes the form

T T
p(h;s,n) = IL h(u)s(u)du |2/f0 h2(u)n (u)du (12)

It is assumed that the nonnegative function n (u ) is the Radon-Nikodym derivative of a
measure m, , defined on the o-algebra generated by the interval [0,T], with respect to X,
the Lebesgue measure on [0,T]. The measure m, satisfies the (fixed-noise-variance) con-

straint m, ([0,T]) = o° and is known to belong to an uncertainty class of the form (1).

Case 2 (Discrete-Time Matched Filtering with a Finite Number of Observa-
tions and Uncertainty in the Covariance Matrix of the Noise): Suppose observe

the random vector

Y; = N;j+s;, ¢+ =12, "k, (13)
where {s;; ¢ =12, ---,k} is a real deterministic sequence and where
{N;; T = 1,2,...,k} is a real random sequence with zero mean and covariance matrix I,
where Z; ; = n;6; ; for n; nonnegative and §; ; =1if i1=j3 and 0 if 1547 . For filters

k
of the form 7 h; ; ¥; the output signal-to-noise ratio at time / is given by
1=1
k 2k k
SNR = | Shisi| /Y S hiiZijhj (14)
i=1 i=1j=1
k T . T .
Here, of course, H = R%, s = [5,,8, " Selt h=[hy hyo .o ], nois

identified with I, and the operation nh is premultiplication of the k-vector I by the

matrix ©. If >0, then the matched filter is given by _E_‘ls, which for &,j = 5,“1-

reduces to



hy i = s;/n;, independent of ! (15)

Therefore the signal-to-noise ratio in (14) takes the form

k k
plhis )= | SShis; | %/ 33 hi*n (16)

i=1 i=1

It is assumed that the nonnegative function n; satisfies the (fixed-noise-variance) con-

k E
straint 3} n; = o® and defines a measure m, on the o-algebra generated by
i =1
{1,2, - - - ,k } which belongs to an uncertainty class of the form (1).

Case 3 (Continuous-Time Matched Filtering with Infinite Observation Interval
and Uncertainty in the Spectral Measure of Bandlimited Noise): Suppose we
have the situation in Case 1 with (0,T) = (-00,00) and with {/V,; —~co<f <oo} zero-
mean, second order stationary with power spectral measure my concetrated on (~wg,wp)-
Suppose further that A(t,u) = h(t-u) for all {,u €E(-00,00), then the output SNR at

any time is given by
p(H ;S ,my )=—l— ] f *H* (w)S (w)d w | 2/_[ ° | H(w) | 2dmy () 17)
2 Y —wp | |

where H is the transfer function of the filter and S is the Fourier transform of the sig-
nal waveform which is laso assumed to be bandlimited in [~wgw,]. Here we identify the
signal, noise and filter quantities of the general formulation with S, mpy, and H , respec-
tively. We thus have II being complex L2(—oo,oo) with the usual inner product and

hdn (w) = H (w)dmpy (w), -w0<w<wov, The optimum filter is given by
H(w) = S(w)/N (W), —wy<w<wy . (18)

dﬂlN

where N (w) = (w) is the R-N derivative with respect to X, the Lebesque measure




on [—wywpl. It is assumed that the spectal measure my satisifies the (fixed-noise-power)
constraint mpy ([~wg.wp]) == Py and is known to belong to an uncertainty class of the

form (1).

Case 4 (Discrete-Time Matched Filtering with Infinite Observation Interval
and Uncertainty in the Spectral Measure of the Noise): Suppose we have the
discrete-time analog of Case 3. Then the problem formulation and the equations for the

signal-to-noise ratio and the optimal filter follow from those of the continuous-time case,

if we replace the spectral interval [~wg,w,] With [-m,7].

IV. Characterization of Maximin Robust Filters

Equation (8) indicates that, for known s and n, the matched filter in the general
case is given by any solution to nh == s if one exists. When, however, n is known only
to be a member of a class NCH, representing uncertainty in the noise statistics, the
following minimax (actually maxmin) robust formulation is motivated [2];

Definition: Suppose that s €Il is given and n €N CH. We say that AE€H is robust

over {s } XN if

inf p(h;s,n)= max{ inf p(h;s,n)}

(19)
neN hell neN

Note that (ﬁ s, A)YEH X H x IT is a saddle point solution to the game of eq. (19) if
inf ph;s,n)> plhi;s, i) = max p(h;s,n)

neN held

Next we prove the following proposition for the four problems formulated above:

(20)

Proposition: For each of the four problems formulated in Section HI for which the
noise statistic belongs to a capacity class of the form (1), the worst-case noise statistic

fi of (20) is associated with the least-favorable element in the capacity class and



can be singled out by Lemma 1.
Proof: To prove this we need to show that (20) is satisfied. Because of (7), this is

equivalent to
<hnh> < <h,ah > (21)

where h is the solution to ik == s. We prove that (21) is valid for each of the four
cases of interest.

Case 1: We assume that M, << X\ (absolutely continuous with respect to \) and
denote the density by #i and the optimal filter by h = s /fi. The absolute continuity
restriction is easy to satisfy; for example, it is satisfied for the e-contaminated and total
variation classes if (the nominal) m,° << X\ and for the band class if mno <<< M and

m,! << X. Then we have

T
s%%dm, < s 2dwm, =f0 A3(t)a(t)dt (22)

foTﬁ?(t yn(t)dt Sfio,T]ﬁgdmn :f{o.T) <Jori
In proving the first inequality in (22) we used the fact that the absolutely continuous
part of a measure is no larger than the measure itsell; to prove the second inequality in
(22) we used the fact that 2 is stochastically smallest under m, over all other elements
in the capacity class.

Case 2: Here we make use of the discrete-set version of Lemma 1. The optimal filter is

ﬁ,- == 5; /fi; where #i; is the pmf corresponding to the measure s, singled out by

Lemma 1 when applied to this case. The equivalent form to (21) is

¥ k k
¥ AP0 = sty < sty = Nk (23)

§=1 1=1 t =1 $=1
In proving the inequality in (23) we used the fact that i becomes stochastically smallest

under m,, , singled out by Lemma 1.

Cases 3 and 4: The optimal filter here is H(w) = S (w)//N(w) where N (w) is the R-N
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derivative of the least-favorable spectral measure iy (singled out by Lemma 1) with
respect to A. Both the continuous-time and the discrete-time problems are represented

here with common notation. The equivalent form to (21) is

J1H |%dmy = [|S | 2N 2dmy g [1S 128 2dmy = [ | A |2dmy (24)

In proving the inequality in (24) we used the fact that N becomes stochastically smallest
under 7y singled out by Lemma 1. The integrals in (24) are over [—wy,w,] or over [-m,m]

for the continuous-time and discrete-time cases, respectively.

V. Conclusions

The robust matched filter for uncertainty in the noise autocorrelation function or
the noise spectral measure is derived for both continuous-time and discrete-time prob-
lems when the uncertainty classes are generated by 2-alternating capacities. In all cases
the maximin robust matched filter depends on the inverse of the worst-case noise statis-
tic which is obtained as the Huber-Strassen derivative of the capacity generating the
uncertainty class with repect to the Lebesgue (or other equivalent measure) on a suitable

interval.
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